Biochemical characterization of the high affinity binding between the glycine receptor and gephyrin.

نویسندگان

  • Nils Schrader
  • Eun Young Kim
  • Jan Winking
  • Jens Paulukat
  • Hermann Schindelin
  • Günter Schwarz
چکیده

Gephyrin is an essential and instructive molecule for the formation of inhibitory synapses. Gephyrin binds directly to the large cytoplasmic loop located between transmembrane helices three and four of the beta-subunit of the glycine receptor and to microtubules, thus promoting glycine receptor (GlyR) anchoring to the cytoskeleton and clustering in the postsynaptic membrane. Besides its structural role, gephyrin is involved in the biosynthesis of the molybdenum cofactor that is essential for all molybdenum-dependent enzymes in mammals. Gephyrin can be divided into an N-terminal trimeric G domain and a C-terminal E domain, which are connected by a central linker region. Here we have studied the in vitro interaction of gephyrin and its domains with the large cytoplasmic loop of the GlyR beta-sub-unit (GlyRbeta-loop). Binding of gephyrin to the GlyR is exclusively mediated by the E domain, and the binding site was mapped to one of its sub-domains (residues 496-654). By using isothermal titration calorimetry, a high affinity (K(d) = 0.2-0.4 microm) and low affinity (K(d) = 11-30 microm) binding site for the GlyRbeta-loop was found on holo-gephyrin and the E domain, respectively, with a binding stoichiometry of two GlyRbeta-loops per E domain in both cases. Binding of the GlyRbeta-loop does not change the oligomeric state of either full-length gephyrin or the isolated E domain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequences Flanking the Gephyrin-Binding Site of GlyRβ Tune Receptor Stabilization at Synapses

The efficacy of synaptic transmission is determined by the number of neurotransmitter receptors at synapses. Their recruitment depends upon the availability of postsynaptic scaffolding molecules that interact with specific binding sequences of the receptor. At inhibitory synapses, gephyrin is the major scaffold protein that mediates the accumulation of heteromeric glycine receptors (GlyRs) via ...

متن کامل

Regulation of glycine receptor diffusion properties and gephyrin interactions by protein kinase C.

Glycine receptors (GlyRs) can dynamically exchange between synaptic and extrasynaptic locations through lateral diffusion within the plasma membrane. Their accumulation at inhibitory synapses depends on the interaction of the β-subunit of the GlyR with the synaptic scaffold protein gephyrin. An alteration of receptor-gephyrin binding could thus shift the equilibrium between synaptic and extrasy...

متن کامل

Quantitative Nanoscopy of Inhibitory Synapses: Counting Gephyrin Molecules and Receptor Binding Sites

The strength of synaptic transmission is controlled by the number and activity of neurotransmitter receptors. However, little is known about absolute numbers and densities of receptor and scaffold proteins and the stoichiometry of molecular interactions at synapses. Here, we conducted three-dimensional and quantitative nanoscopic imaging based on single-molecule detections to characterize the u...

متن کامل

Identification of a gephyrin binding motif on the glycine receptor β subunit

The tubulin-binding protein gephyrin copurifies with the inhibitory glycine receptor (GlyR) and is essential for its postsynaptic localization. Here we have analyzed the interaction between the GlyR and recombinant gephyrin and identified a gephyrin binding site in the cytoplasmic loop between the third and fourth transmembrane segments of the I] subunit. GlyR a subunits and GABAA receptor prot...

متن کامل

Structural basis of dynamic glycine receptor clustering by gephyrin.

Gephyrin is a bi-functional modular protein involved in molybdenum cofactor biosynthesis and in postsynaptic clustering of inhibitory glycine receptors (GlyRs). Here, we show that full-length gephyrin is a trimer and that its proteolysis in vitro causes the spontaneous dimerization of its C-terminal region (gephyrin-E), which binds a GlyR beta-subunit-derived peptide with high and low affinity....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 279 18  شماره 

صفحات  -

تاریخ انتشار 2004